无锡谷雨电子有限公司

ZG840x 快速开始

www.wx-iot.com 2015/9/18

Start

版本记录	更改记录	撰写人
A	初始化版本	戚二进 2015-09-18

目录

1前言		3
1.1	简单介绍	
1.2	下载相关软件工具	
1.3	测试前准备	
2 ZG840	₩ 设备测试	
2.1	测试软件运行要求	
2.2	2G840x 协调器配置	
2.3	9 组网进行数据测试	
2.4	数据通信方式设定与通信测试	
2.5	网络打开与关闭	17
2.6	;联系我们	

1 前言

ZG840X 系列 zigbee 产品目前包括 ZG8401 和 ZG8402。它们是功能相同的 zigbee 透传产品。ZG8401 是需要外接天线和工作电源的 RS485 通信接口的 Zigbee 透传产品,如图 1 所示。 ZG8401 是以黑色小盒装形式呈现。ZG8402 与 ZG8401 几乎完全一样,没有什么其也区别, 唯一的区别是增加功放功能,使信号的传输距离更远,且穿墙的能力更加的出色。

图 1 ZG8401

1.1 简单介绍

这篇文档是基于无锡谷雨电子的 ZG840x 系列的秀传适配器进行描述与操作。其目的是 让用户更快更方便了解其功能与操作。

1.2 下载相关软件工具

当用户收到 ZG-Mxx 模块时,可以到无锡谷雨的官网 <u>http://www.wx-iot.com</u> 产品 中心点选 ZIGBEE 透传系列中任何一个透传产品都可以在其资料下载页面中找到,也可以到 <u>http://pan.baidu.com/s/1gdpc9H5</u>这个百度云盘中下载测试与配置工具,以便在 PC 端能 进行方便快速进行测试。

其软件工具包括以下几个:

- ▶ 数据调试工具 V1.4.rar 截止写作日期,已经更新到 V1.4
- ▶ 参数配置工具 V1.5.rar 截止写作日期,已经更新到 V1.5
- ZTop.rar
- V3 版本使用
- ➤ ZTopology.rar V1, V2 版本使用
- ▶ 波特率测试工具.rar

数据调试工具是类似于一个串口调试工具的一个上位机软件。在其中可以收发串口

数据,也可以读取模块的相关内部的相关参数。其界面如下所示。(界面适用于 **ZG840x** 设备)

🗙 ZG-Mxx I	Debugger	V1.4 ©7	5锡谷雨电子有限公司		
设置框				消息框	
波特率:	38400	•	串口(connect)	(发送) FC 03 02 00 00 FD (HEX Bytes = 7)	
串口:	COH7	-	刷新	【仮到】FC 03 02 00 00 FF 02 (HEA Bytes = 7) 【发送】FC 03 04 00 00 0FB (HEX Bytes = 7)	
NODE:		-	设置	【收到】FC 03 04 00 FE FF FA (HEX Bytes = 7)	
PANID:	FF 00		读取PANID	【 收到】 FC 03 0D 00 00 FF FF F2 (HEX Bytes = 7)	
网络地址	FF FE		读取网络地址	【发送】FC 03 05 00 00 0FA (HEX Bytes = 7)	
自定义:	FF FF		读取自定义	(秋田) FC 03 05 00 D9 FD 48 08 00 4B 12 00 C4 (HEX Bytes = 13) 【发送】FC 03 0B 00 00 00 F4 (HEX Bytes = 7)	
MAC:			读取NAC	【秋到】FC 03 0B 00 4C 4B 41 B2 (HEX Bytes = 8)	
00 12 4B	00 06 45	FD D9		【发达】FC 03 0C 00 0F 09 17 E2 (HEX Bytes = 1) 【收到】FC 03 0C 00 0F 09 17 E2 (HEX Bytes = 8)	
SN 문:	5000001		法的SN号	【发送】FC 03 11 00 00 00 EE (HEX Bytes = 7) 【財団】 FC 03 11 00 01 00 FE (HEX Patter = 7)	
出口时间:	2015-9-2	3	读取出厂时间	【发送】FC 03 08 00 00 F7 (HEX Bytes = 7)	
器件类型	路由器		读取器件类型	【秋田】FC 03 08 00 02 00 F5 (HEX Bytes = 7) 【秋洋】FC 03 10 00 00 00 FE (HEX Bytes = 7)	
网络状态	寻找网络		读取网络状态	【仮到】FC 03 10 00 00 BF (HEX Bytes = 1) 【仮到】FC 03 10 00 32 56 05 8E (HEX Bytes = 8)	
器件型号	ZG8001		读取器件型号		
			_		
	~ .				
/					
	2080				
	and the second				
	R				
					清除
				发送框	
				发送:	; 发送

图 3 ZG-Mxx Debugger

模块参数配置工具可以读取模块内部的参数,也可以对相关的参数进行设定。其工作界面如下所示。(界面适用于 ZG840x 设备)

通信ロ		ZG-Mxx S	Setting		
名称: COM7	- 3	皮特率: 38400	•	刷新 日本	(connect)
器件属性		模块端口配置			
厂 商:	hostyu	P0 P1	P2		
뭔 号: :	G8001	P0_0	P0_3] PO_6	
软件版本:	/2	P0_1	P0_4] PO_7	
SN:	5000001	P0_2	P0_5		
出厂时间:	2015-9-23	注:打勾是处于	F输出,未打勾是4	諭入	设置 (OK)
Z-Stack 参数	t				
器件类型:	路由器	更改	器件 状态:	寻找网络	
	77.00	更改	网络 信道:	11	更改
PANID:	11 00				
PANID: EXT_PANID:	000000000000000000000000000000000000000	更改	自定义地址:	FF FF	しません
PANID: EXT_PANID: 网络地址:	rr 00 00000000000000000 FF FE	更改更改	自定义地址: 传输 方式:	FF FF 00	更改
PANID: EXT_PANID: 网络地址: MAC地址:	FF 50 00000000000000000 FF FE 00124B000645FDD9	更改 更改	自定义地址: 传输 方式: 串口波特率:	FF FF 00 38400	更改 更改 更改 更改
PANID: EXT_PANID: 网络地址: MAC地址: 父地址:	FF 00 00000000000000000 FF FE 00124B000645FDD9 FF FF	更改 更改	自定义地址: 传输 方式: 串口波特率: 密钼:	FF FF 00 38400	更改 更改 更改 更改 更改 更改

图 4 ZG-Mxx Setting

ZTopology 工具软件可以查看网的连接结构。在 ZTOP 中可以方便快捷知道当前网络的结构信息。其界面如下

图 5 ZTopology 界面

波特率测试工具是可以测试出当前模块工作串口波特率大小。当用户不知道当前模 块串口波特率时,使用这个模块可以轻松完成模块波特率的测试。其界面如下图如示。

【 法法】FC 03 13 00 00 00 EC (HEX bytes = 7) 【 友法】FC 03 13 00 00 00 EC (HEX bytes = 7) 【 友法】FC 03 13 00 00 00 EC (HEX bytes = 7) 【 友法】FC 03 13 00 00 00 EC (HEX bytes = 7) 【 友法】FC 03 13 00 00 00 EC (HEX bytes = 7) 【 友法】FC 03 13 00 00 00 EC (HEX bytes = 7) 【 友法】FC 03 13 00 00 00 EC (HEX bytes = 7)	当前波特率:
【欧知】 FC 03 13 00 02 00 EE (HEX Bytes = 7) 【安美】 FC 03 13 00 00 00 EC (HEX bytes = 7) 【仮到】 FC 03 13 00 02 00 EE (HEX Bytes = 7) 【友美】 FC 03 13 00 00 00 EC (HEX bytes = 7) 【友美】 FC 03 13 00 02 00 EE (HEX Bytes = 7)	36400
	PASS

图 6 ZG-Mxx Baud Test

1.3 测试前准备

ZG840x 系列透传产品,在使用之前,要安装相应的驱动程序。只有安装了相应的驱动程序才会在 PC 上生成相关的串口设备。如下图所示。

4	🚔 PC-20150301QNWL	
	▷ 🥁 IDE ATA/ATAPI 控制器	
	▷ 🔲 处理器	
	▷ 🧫 磁盘驱动器	
	▷ 🦢 电池	
	🎍 🖤 端口 (COM 和 LPT)	
	🖤 通信端口 (COM1)	
	▷ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	▷ 💵 监视器	*
	▷·@> 键盘	7
	4. 🜆 其他设备	1/1
	> 🎼 人体学输入设备	
	▷ 🛶 声音、视频和游戏控制器	
	▷ 🖉 鼠标和其他指针设备	
	▶ 🟺 通用串行总线控制器	
	▷ 🔮 网络适配器	
	▷ 🜉 系统设备	
	▷ 🔩 显示适配器	$X\lambda$

如果用户直接使用 PC 的 DB9 串口,则不需要安装任何驱动。如果用户使用是 USB 转 RS232 线缆,则需要根据线缆厂家要求安装相应的驱动文件。

安装完驱动,只要将设备插在电脑的 USB 接口,便会产生工作串口。记住串口号,并 在测试软件中进行连接,便可通过上位机对 ZG840X 设备进行操作。如上图 3,4 所示。

2 ZG840x 设备测试

详细的硬件说明,可以查看《ZG840x硬件手册.pdf》

2.1 测试软件运行要求

ZG840x 所有相关的测试软件,都是为了 winxp 或更新的 win7 操作系统所编写。目前还 没有 MAC 和 linux 操作系统上运行的测试软件。

对个人 PC 要求如下:

- ◆ 运行 windows xp 或更新的操作系统
- ◆ .NET Framework 4.0 (win7 及以上的操作系统本身自带)
- ◆ 至少一个 USB 接口或 RS232 接口,用于数据通信
- ◆ 如果使用 MiniUSB 线,则要安装一个 CH340G 的驱动

2.2 ZG840x 协调器配置

ZG840x 设备在出厂时,默认都是路由器的 ZIGBEE 设备。所以上电不会自动组网,除非

6

空间里存在一个在相同信道,有一个相同的 PanID 协调器。

现在我们要做的事情就是将其中的一个 ZG840x 设备,设置成协调器。

将一个 ZG840x 的设备插在 PC 的 USB 接口上。

打开 ZG-Mxx Setting.exe 软件,在通信口名称里选择上述的串口号,然后点击**串口(close)** 按钮进行连接。此时的按钮就会从橙色变成绿色。如下图所示。(界面适用于 ZG840x 设备)

🔆 ZG-Mxx Set	ting V1.5 ©无锡谷雨	雨电子有限公司				ן ר
通信口 名称: COM7	Z 	ZG-MXX 3 特率: 38400	Setting	刷新	🗌 (connect)	
器件属性 厂 商: G 型 号: Z 软件版本: V SN: 5 出厂时间: 2	2 68001 2 000001 015-9-23	模块端口配置 P0 P1 P0_0 P0_1 P0_2 注:打勾是处	P2 P0_3 P0_4 P0_5 F输出,未打勾是] P0_6] P0_7 輸入 [设置 (OK)	
Z-Stack 参数 器件类型: PANTD: EXT_PANTD: 网络地址: MAC地址: 父地址: 父MAC地址:	路由器 FF 00 000000000000000 FF FE 00124B000645FDD9 FF FF 000000000000000000000000	更改 更改 更改 更改 更改	 器件 状态: 网络 信道: 自定义地址: 传输 方式: 串口波特率: 密钥: ①10305070908 	寻找网络 11 FF FF 00 38400	更改 更改 更改 更改 更改	
	恢复出厂设置		010303010800			

图 7 ZG-Mxx Setting 与 ZG8001 通信

要将其设成协调器,只要点击器件类型后的更改按钮,就会弹出对话框。在更改器件类型一栏中选择协调器,然后点击确定即可。设定后的模块参数信息如下图 8 所示。(界面适用于 ZG840x 设备)

通信口	ZG-Mxx Setting	
名称: COM7 🚽	波特率: 38400 ▼ 刷新 串口(c	onnect)
器件属性	模块端口配置	
厂 商: Ghostyu	P0 P1 P2	
型 号: ZG8001	PO_0 PO_3 PO_6	
软件版本: V2	PO_1 PO_4 PO_7	
SN: 5000001	P0_2 P0_5	
出厂时间: 2015-9-23	注:打勾是处于输出,未打勾是输入 设	置 (OK)
I-Stack 参数		
器件类型: 协调器	更改 器件 状态: 启动协调器	
PANID: FF 00	更改 网络 信道: 11	更改
EXT_PANID: 00124B000645FD	99 更改 自定义地址: FF FF	更改
网络地址: 00 00		更改
MAC地址: 00124B000645FDD	19 串口波特率: 38400	
父地址: FF FF	应钮•	国改
父MAC地址: 0000000000000000	0	<u>STA</u>
恢复出厂设置	01030507090B0DFF00020406080A0C0	D

图 8 协调器设定成功

设定成路由器或终端也是按照上述方法一样进行操作。其他参数的设定也是一样的操作。 只要在 ZG-Mxx Setting 界面里有更改按钮的参数,都是可以进行修改的。用户可以自己根据 需要进行操作与测试。

如果操作过程中,希望回到出厂时的状态,只要在界面里点击恢复出厂设置按钮即可完成。

2.3 组网进行数据测试

上述的操作,是将其中一个模块设成协调器。协调器启动好后,空间中就会存在 panid 标 识的 zigbee 网络。这时只要上电其他 ZG840x 设备,他们就会加入协调器建立的网络里。其 主要标识就是测试底板的 LED 灯会 2 秒中闪烁一次。另外一个标识就是在 ZG-Mxx Setting 里 的父地址,与父 MAC 地址就会有数字出现,不再是 0。其如下图 9 所示。(界面适用于 ZG840x 设备)

	▼ 波特率: 38400 ▼ 刷新 串口 (connect)	
 時属性 一 商: Ghostyu 型 号: ZG8002 次件版本: V2 SN: 5000002 出口时间: 2015-9-23 	模块端口配置 P0 P1 P2 P0_0 P0_3 P0_6 P0_1 P0_4 P0_7 P0_2 P0_5 注:打勾是处于输出,未打勾是输入	
-Stack 参数 器件类型: 路由器 PANID: FF 00 EXT_FANID: 00124B0006453	更改 器件 状态: 路由器启动 更改 网络 信道: 11 70D9 更改 自定义地址: FF FF 更改	
网络地址: 5E A1 AAC地址: 00124B0007244 父地址: 00 00 父MAC地址: 00124B0006455	更改 传输 方式: 00 更改 DC4D 串口波特率: 38400 更改 密钥: 更改	

图 9 加入网络后的 ZG-Mxx Setting

加入网络后两个模块就可以进行数据无线收发测试了。在数据接收测试过程中我们使用 ZG-Mxx Debugger 进行数据的测试工作。

打开两个 ZG-Mxx Debugger 数据测试工具,在串口一栏中选择相应的串口号,然后点击 串口(Close)按钮进行连接。在没有数据交互时按钮的背景色是橙色的,如果有数据交互 橙色的背景就会绿色。如下图 10 所示。(界面适用于 ZG840x 设备)

图 10 ZG-Mxx Debugger 与数据连接图

◇ 协调器向数网络中广播数据(协调器默认发送数据方式是广播)(界面适用于 ZG840x设备) ∻

10 10 10 <th10< th=""> 10 10 <th10< t<="" th=""><th></th></th10<></th10<>	

2.4 数据通信方式设定与通信测试

ZG840x 设备的数据通信方式有五种,见下表所示。默认数据通信方式为 0。 表一数据传输方式

农 刻酒存制力式		
传输模式值 (十六进制)	数据透传方式下	点对点传输方式下
00	数据透传	Zigbee 短地址寻址,含包头包尾
01	数据透传+zigbee 短地址	Zigbee 短地址寻址,含包头包尾
02	数据透传+MAC 地址	Zigbee 短地址寻址,含包头包尾
03	数据透传+自定义地址	Zigbee 短地址寻址,含包头包尾
04	数据透传	Zigbee 短地址寻址,不含包头包尾
05	数据透传	Zigbee 自定义地址,不含包头包尾
>05	数据透传	Zigbee 自定义地址,不含包头包尾

注: 当数据传输方式为数据透传 01,02,03 及点对点传输方式时,最大能传输的数据包大 小必须限制在 80 个字节之内,否则超过的部分将会被丢弃。但我们推荐帧大小限制在 32 个字节之内。

10

2.4.1 传输模式为0

◆ 数据透传

ZG-Mxx 默认的数据传输方式 0,具体的数据测试如 2.3 节。此处不作叙述。

◆ 点对点数据传输

用 ZG-Mxx Debugger 将其中一个 ZG-Mxx 模块的数据传输方式设成 00, 然后在发送 框中采用 FD 发送数据。

例如: FD 02 64 A7 02 03

FD: 点对点数据传输方式的标志

- 02: 用户数据的长度
- 64: 目标地址的低字节
- A7: 目标地址的高字节
- 02: 用户数据
- 03: 用户数据

接收方 A7 64 的 ZG-Mxx 模块就会收到

FD 02 64 A7 02 03 00 00

- 00: 发送方地址的低字节
- 00: 发送方地址的高字节

(界面适用于 ZG840x 设备)

2.4.2 传输模式为 01

◆ 数据透传

用 ZG-Mxx Debugger 将其中的一个模块的数据传输方式设成 01,这时数据发送方 会在发送数据的后面加上自己的 zigbee 网络地址。如下图所示。(界面适用于 ZG840x 设备)

◆ 点对点数据传输

用 ZG-Mxx Debugger 将其中一个 ZG-Mxx 模块的数据传输方式设成 01, 然后在发送 框中采用 FD 发送数据。

例如: FD 02 64 A7 02 03

- FD: 点对点数据传输方式的标志
- 02: 用户数据的长度
- 64: 目标地址的低字节
- A7: 目标地址的高字节
- 02: 用户数据
- 03: 用户数据

接收方 A7 64 的 ZG-Mxx 模块就会收到

FD 02 64 A7 02 03 00 00

- 00: 发送方地址的低字节
- 00: 发送方地址的高字节

(界面适用于 ZG840x 设备)

2.4.3 传输模式 02

◆ 数据透传

用 ZG-Mxx Debugger 将其中的一个模块的数据传输方式设成 02,这时数据发送方 会在发送数据的后面加上自己的 zigbee MAC 地址。如下图所示。(界面适用于 ZG840x 设备)

X ZG-Max Debugger VLA C	天爆谷的电子有限公司		X 2G-Mex Debugger V1.4 C	无端异常用于有限公司			
82 0		ABE	9 2 0		ARE	分 当线上母	
波特车: 30400 -	and the second second	(2015) 21 21 21 12 12 12 12 01 (IEE/Lytes = 0)	波特案: 30400 -	Inclusion in the	1 (25) 21 21 21 12 12 12 13 01 01 12 45 00 06 45 F5 55	HEX Dytes = 10)	
8D1 000 -	499	【 2011年 11 21 21 12 12 12 13 01 (HEX bytes = 8) 【 2011年 21 21 21 12 12 12 12 13 01 (HEX bytes = 8)	801 091 -	「「「「「」	(1975) 21 21 21 12 12 12 12 12 01 10 12 48 00 06 45 FD 06	HEX Bytes = 16) HEX Bytes = 16)	
MODE: 02 -	02	【安洗】 21 22 21 12 12 12 12 02 OHRX bytes = 8]	1010E1	19.22	[(09)] 21 21 21 12 12 12 12 12 01 00 12 48 00 06 45 FD 00	HEE Dytes = 16]	
TAXUE: 17 00	(CREASED)	【実法】21 21 21 21 12 12 12 12 10 UBA Bytes = 6) 【実法】21 21 21 12 12 12 12 12 10 (HEX bytes = 6)	74KID: 77 00	CRITING	(199) 21 21 21 12 12 12 12 12 01 00 12 40 00 06 45 FD 00 (199) 21 21 21 12 12 12 12 12 01 00 12 40 00 06 45 FD 00	HEX Bytes = 16) HEX Dytes = 16)	
网络地址:00 00	成取网络地址	【安选】 21 21 21 12 12 12 13 01 QHEX bytes = 6]	网络地址:18 A1	anti-	CREE 21 21 21 21 12 12 12 13 01 00 12 48 00 06 45 FD D0	HEX Bytes = 161	
mm:: 77 77	20002	(#it) 21 22 21 12 12 12 12 13 01 (mix synar = 0)	arr: nn	体取自安义	(090) 21 21 21 12 12 12 12 12 00 10 12 40 00 06 45 FD 09	HEE Dytes = 16]	
BACI	iktesc	【发送】21 21 21 21 42 43 13 12 12 01 (NEX bytes = 6)	WAC1	ikitimac	【 [2]] 21 21 21 12 12 12 12 12 01 00 12 48 00 06 45 FD 00	HEX Bytes = 16)	
00 12 48 00 06 45 73 19	-	【安选】 21 21 21 22 12 12 12 12 10 (HEX bytes = 6)	00 12 48 00 07 24 0C 48		[(19)] 21 21 21 12 12 12 12 13 01 00 12 48 00 06 45 FD 09	HEE Bytes = 16)	
ca & second	- AND CALL	【波通】 21 21 21 12 12 12 12 01 (ABX bytes = 8)	cr 8. 500000	ence2	【429] 21 21 21 12 12 12 12 12 01 10 12 48 00 06 45 FD 20	HEX Bytes = 16)	
NULER 2012-9-23	Bits Wats	【安田】21 21 21 12 12 12 12 12 12 13 00 (HEX bytes = 6)	NETHE 2015-9-23	dan ware	[1299] 21 21 21 12 12 12 12 12 01 00 12 48 00 06 45 FD 09	HEX Bytes = 16)	
高州本型 (b)相互	读取器供类型	[3218] 21 21 21 12 12 12 12 01 (HEX bytes = 6)	四件未受 新用器	482030	[[13]] 21 21 21 12 12 12 12 12 01 00 12 48 00 06 45 FD 50	HEE Dytes = 16)	
网络状态: 协调器会动	读和历始状态	【安法】21 21 21 12 12 12 13 01 (HEX bytes = 6) 【安法】21 21 21 12 12 12 13 01 (HEX bytes = 6)	网络状态:路由昆仑动	成的网络状态	(1999) 21 21 21 12 12 12 12 12 01 00 12 48 00 06 45 F9 09 (1999) 21 21 21 12 12 12 12 01 00 12 48 00 06 45 F9 09	HEX Bytes = 16) HEX Bytes = 16)	
書件한목: 200001	成取器件型号	【安注】 21 21 21 12 12 12 12 12 01 (HHX bytes = 8)	器件型号: Z60002	成职器件型号	[(19)] 21 21 21 12 12 12 12 12 01 00 12 48 00 06 45 FD D0		
		「変換」21 21 21 12 12 12 12 12 01 UBX bytes = 80 【変換】21 21 21 12 12 12 12 01 UBX bytes = 80			[1929]2 21 21 21 12 12 12 12 12 01 00 12 48 00 06 45 PD 05 [1929]2 21 21 21 12 12 12 12 12 01 00 12 48 00 06 45 PD 05	HEX Dytes = 16)	
		【波法】 21 21 21 12 12 12 13 01 (HEX bytes = 6)			[{[1]]] 21 21 21 12 12 12 12 13 01 10 12 48 00 06 45 FD 89	HEE Bytes = 16)	
		(2):52 21 21 21 12 12 12 12 12 10 11 (2):53 bytes = 81			[40:9] 21 21 21 12 12 12 12 12 01 00 12 48 00 06 45 FD 20 [40:9] 21 21 21 12 12 12 12 13 01 00 12 48 00 06 45 FD 20	HEE Bytes = 16]	
		【发送】21 21 21 12 12 12 12 01 (UEX bytes = 8)			[1299]] 21 21 21 12 12 12 12 01 00 12 48 00 06 45 FD 09	HEX Bytes = 16)	
2 Gen		(Sing 21 21 21 12 12 12 12 0) (HEX bytes = 8)	PGa.		[(0;9)] 21 21 21 12 12 12 12 01 00 12 48 00 06 45 FD 55	HEE Bytes = 16)	
1001			101				
44			444				
			1000				
		301					#味
		***			XLE		
		※後: 21210121212121			发进:	□ \$\\$7#	末法
						in a	1
			1				

◆ 点对点数据传输

用 ZG-Mxx Debugger 将其中一个 ZG-Mxx 模块的数据传输方式设成 02, 然后在发送 框中采用 FD 发送数据。

例如: FD 02 64 A7 02 03

- FD: 点对点数据传输方式的标志
- 02: 用户数据的长度
- 64: 目标地址的低字节
- A7: 目标地址的高字节
- 02: 用户数据
- 03: 用户数据

接收方 A7 64 的 ZG-Mxx 模块就会收到

FD 02 64 A7 02 03 00 00

- 00: 发送方地址的低字节
- 00: 发送方地址的高字节
- (界面适用于 ZG840x 设备)

2.4.4 传输模式为 03

◆ 数据透传

用 ZG-Mxx Debugger 将其中的一个模块的数据传输方式设成 03,这时数据发送方 会在发送数据的后面加上自己的 zigbee 自定义地址。如下图所示。(界面适用于 ZG840x 设备)

◆ 点对点数据传输

用 ZG-Mxx Debugger 将其中一个 ZG-Mxx 模块的数据传输方式设成 03, 然后在发送 框中采用 FD 发送数据。

例如: FD 02 64 A7 02 03

- FD: 点对点数据传输方式的标志
- 02: 用户数据的长度
- 64: 目标地址的低字节
- A7: 目标地址的高字节
- 02: 用户数据
- 03: 用户数据

接收方 A7 64 的 ZG-Mxx 模块就会收到 FD 02 64 A7 02 03 00 00

00:发送方地址的低字节 00:发送方地址的高字节

(界面适用于 ZG840x 设备)

2.4.5 传输模式为 04

◆ 数据透传

用 ZG-Mxx Debugger 将其中的一个模块的数据传输方式设成 04。这个与传输模式 0 一样是最基本的数据传输方式,也是模块默认的数据传输方式。如下图所示。(界 面适用于 ZG840x 设备)

◆ 点对点数据传输
 用 ZG-Mxx Debugger 将其中一个 ZG-Mxx 模块的数据传输方式设成 04, 然后在发送
 框中采用 FD 发送数据。
 例如: FD 02 64 A7 02 03
 FD: 点对点数据传输方式的标志

02:用户数据的长度
64:目标地址的低字节
A7:目标地址的高字节
02:用户数据
03:用户数据
接收方 A7 64 的 ZG-Mxx 模块就会收到
02 03

(界面适用于 ZG840x 设备)

2.4.6 传输模式为 05

◆ 数据透传

用 ZG-Mxx Debugger 将其中的一个模块的数据传输方式设成 05。这个与传输模式 0 一样是最基本的数据传输方式,也是模块默认的数据传输方式。如下图所示。(界 面适用于 ZG840x 设备)

◆ 点对点数据传输

用 ZG-Mxx Debugger 将其中一个 ZG-Mxx 模块的数据传输方式设成 05, 然后在发送 框中采用 FD 发送数据。

例如: FD 02 64 A7 02 03

FD: 点对点数据传输方式的标志

02: 用户数据的长度

01: 目标自定义地址的低字节

00: 目标自定义地址的高字节

02: 用户数据

03: 用户数据

接收方 00 01 的 ZG-Mxx 模块就会收到

02 03

注: 自定义地址可以通过 ZG-Mxx Setting 来设定。(界面适用于 ZG840x 设备)

2.5 网络打开与关闭

(此功能只能在V3版本的模块中使用)

在V3版本中,系统中占用了P0.1引脚,作为打开或关闭网络的输入引脚。其输入为下降 沿有效。模块网络默认是打开的,如果有户想要将网络关闭,可以通过模块的P0.1引脚输入 一个下降沿信号。如果网络关闭,则模块的P0.0引脚就会输出高电平,以指示网络的状态。 用户可以在P0.0引脚上接一个指示的led,可以方便的观察。这个关闭网络的功能引脚只能在 协调器与路由器中存在,在终端节点中不存在这个功能说明。设置之后,模块会记住当前的 设定,下次上电会继续保持。

在打开或关闭网络功能,除了通过手动在P0.1上产生一个下降沿以外,还可以通过串口指令完成此功能。用户可以通过串口向模块发送一个FC 06 1D 00 00 XOR来关闭网络,用户也可以向串口发送一个FC 06 1D 00 01 00 XOR 来打开网络。当网络打开后,其它的节点就可以加入这个网络,否则其它节点是不能加入这个网络的。

协调器与路由器对打开或者关闭网络,产生不同的操作行为。当协调器接收这个操作时,不仅会在自己模块内产生结果,还会将此操作广播到网络中其它路由节点,使网络内其它节

点产生相同的操作,实现网络内同步。而对于路由器则只能在本地操作,不会向网络中的其 它节点发送操作信息。

用户可以测试一下,在网络打开,与网络关闭状态,新的网络节点会不会加其中。

2.6 联系我们

无锡谷雨电子有限公司 戚二进 tel:151-6166-5245 公司网址: <u>http://www.wx-iot.com</u> 官网店铺: <u>http://ghostyu.taobao.com</u>